
 28 www.ukoug.org

SPRING 15

Technology

Distributed Hinting
It is not easy to optimise a distributed query, but the most important target, usually, is to
minimise the traffic between the databases involved. There aren’t many steps you can
take to achieve this target, but there is a strategy that tends to help and a hint that is
particularly relevant.

Jonathan Lewis, Freelance Consultant, JL Computer Consultancy

Basic Problem
The biggest problem with distributed
queries is that the optimizer doesn’t
seem to allow for the fact that they are
distributed, and once it has acquired
whatever statistics it can for all the
relevant objects it behaves as if all the
objects were in the local database. This
statement isn’t quite true – there are some
indications in trace files from 10g onwards
that the optimizer allows some cost for
remote execution of distributed queries,
and I’ve seen occasional clues that it has
considered executing distributed queries
remotely; but the cost adjustments were
very small, and the optimizer seemed to
ignore, or fail to use, them.

Let’s consider an example: I have a query
that joins dist_home and dist_away, I
collect a few rows from dist_home and for
each row in dist_home I find some rows
in dist_away. I’m likely to see one of two
execution plans: a nested loop join with
an indexed access from dist_home to
dist_away or a hash join with dist_home
as the build table and dist_away as the
probe table. Here’s an example query and
the two plans (nested loop first) when
dist_away is a remote table.

There’s not a lot of difference between
these two plans at first sight, but the
cost of the nested loop is significantly
higher than the cost of the hash join – so

select	
	 dh.small_vc,
	 da.large_vc
from
	 dist_home		 dh,
	 dist_away@orcl@loopback	 da
where	
	 dh.small_vc like ‘1%’
and	 da.id = dh.id;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Inst |IN-OUT|

0	SELECT STATEMENT		202	25250	223 (1)		
1	NESTED LOOPS		202	25250	223 (1)		
* 2	TABLE ACCESS FULL	DIST_HOME	202	2020	19 (0)		
3	REMOTE	DIST_AWAY	1	115	1 (0)	ORCL@~	R->S

Predicate Information (identified by operation id):

 2 - filter(“DH”.”SMALL_VC” LIKE ‘1%’)

Remote SQL Information (identified by operation id):
--
 3 - SELECT /*+ USE_NL (“DA”) */ “ID”,”LARGE_VC” FROM “DIST_AWAY” “DA” WHERE “ID”=:1
 (accessing ‘ORCL@LOOPBACK’)

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Inst |IN-OUT|

0	SELECT STATEMENT		202	25250	32 (0)		
* 1	HASH JOIN		202	25250	32 (0)		
* 2	TABLE ACCESS FULL	DIST_HOME	202	2020	19 (0)		
3	REMOTE	DIST_AWAY	2000	224K	13 (0)	ORCL@~	R->S

Predicate Information (identified by operation id):

 1 - access(“DA”.”ID”=”DH”.”ID”)
 2 - filter(“DH”.”SMALL_VC” LIKE ‘1%’)

Remote SQL Information (identified by operation id):
--
 3 - SELECT /*+ NO_SWAP_JOIN_INPUTS (“DA”) USE_HASH (“DA”) */ “ID”,”LARGE_VC” FROM
 “DIST_AWAY” “DA” (accessing ‘ORCL@LOOPBACK’)

FIGURE 1

OracleScene
D I G I T A L

www.ukoug.org 29

Technology: Jonathan Lewis

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Inst |IN-OUT|
--
0	SELECT STATEMENT REMOTE		202	44844	32 (0)		
* 1	HASH JOIN		202	44844	32 (0)		
2	REMOTE	DIST_HOME	202	3434	13 (0)	!	R->S
3	TABLE ACCESS FULL	DIST_AWAY	2000	400K	19 (0)	ORCL	
--

Predicate Information (identified by operation id):

 1 - access(“A1”.”ID”=”A2”.”ID”)

Remote SQL Information (identified by operation id):
--
 2 - SELECT “ID”,”SMALL_VC” FROM “DIST_HOME” “A2” WHERE “SMALL_VC” LIKE ‘1%’
 (accessing ‘!’)

that’s the default plan taken in this case.
Looking at all the details of operation 3
(REMOTE), though, we can see that really
we have to choose the lesser of two evils.
(Note that we weren’t given much space
in the “Instance” column for the database
link name for the remote database, and
the “IN-OUT” column shows the data flow
to be “Remote to Serial”).

When we use the nested loop join we
have to operate the remote SQL an
estimated 200 times – and looking at
the Remote SQL Information we see that
we’re selecting a couple of columns from
the remote table for a given ID. That
should be a high precision access, so
we’re looking at a large number of small
messages travelling back and fore across
the database link.

When we use the hash join we’re only
going to operate the remote SQL once –
but looking at the content of the remote
SQL we see that we’re selecting all the
columns we need from EVERY row in
the table. In this case we’re going to pull
a large volume of (mostly redundant)
information across the network (Tip: you
can adjust the SQL*Net parameter SDU_
SIZE and the O/S network buffer size to
make this transfer as efficient as possible).

This is often the problem with distributed
queries: which option has the smaller
impact on your network, a large number
of small round trips or a small number
of large round-trips. A choice between
latency and throughput.

But there is a third way – if we push
the selected dist_home data to the
remote site it will be a bulk transfer of
a fairly small amount of data; then we
can do the join remotely and push the
(relatively) small result set back. In this
way we have kept both the volume of
traffic and the number of messages to a
minimum. Choosing which site actually

runs the query can make a big difference
to performance – and that’s what the
driving_site() hint gives us. The hint
should reference a table at the site where
you want the query to operate; In this
case I would add /*+ driving_site(da) */ to
my query, which would change the hash
join plan into the following (see Figure 2):

Note how the first line of the plan now
says “select statement REMOTE”. This
is the execution plan as seen from the
perspective of the remote database. This
is why the reference to the DIST_HOME
table (operation 2) has become REMOTE;
the odd “Instance” identifier of “!” is the
name given to the local database when
viewed from the perspective of the remote,
and notice how the IN-OUT columns now
says that it’s the DIST_HOME table that is
transferred “Remote to Serial”.

If we check the numbers in this plan we
can see, first of all, that the cost hasn’t
changed from that of the original hash
join (which helps to explain why the
optimizer hasn’t chosen to make this
switch between local and remote). But
according to the Bytes column we’re
going to pull 3,434 bytes to the remote
database, do the join, then send 44,844
bytes back – compared to pulling 224KB
from the remote database when we
executed from the local database. That
looks like a potential benefit to me (albeit
a small one with this little example.)

Join Order
Unfortunately it’s not just the choice of
where to execute the query that matters,
and it’s possible to run a query from the
“right” database but still cause too much
network traffic by accessing the tables in
the wrong order. Here’s a sample query
with execution plan (see Figure 3):

We’re joining remote tables sales and
products with local table sites; that
being the case we might consider using
replication technology to replicate
the sites tables (which sounds as if it
shouldn’t be subject to much change)
to the remote database so that we can
do a three-table remote (as opposed to
distributed) join. But we’re stuck with
what we’ve got at present and what
we’ve got is a plan where Oracle gets

FIGURE 2

select
 sale_date,product, site, qty, profit
from
 sales@&m_target sal,
 sites sit,
 products@&m_target prd
where
 sit.id = sal.site
and prd.id = sal.product
and prd.promoted > date’2014-06-17’
;

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Inst |IN-OUT|
--
0	SELECT STATEMENT		3627	162K	10030 (1)		
1	NESTED LOOPS		3627	162K	10030 (1)		
2	NESTED LOOPS		10000	322K	11 (28)		
3	REMOTE	SALES	10000	263K	9 (12)	ORCL@~	R->S
* 4	INDEX UNIQUE SCAN	SI_PK	1	6	0 (0)		
5	REMOTE	PRODUCTS	1	13	1 (0)	ORCL@~	R->S
--

Predicate Information (identified by operation id):

 4 - access(“SIT”.”ID”=”SAL”.”SITE”)

Remote SQL Information (identified by operation id):
--
 3 - SELECT “SALE_DATE”,”SITE”,”PRODUCT”,”QTY”,”PROFIT” FROM “SALES” “SAL”
 (accessing’ORCL@LOOPBACK’)

 5 - SELECT “ID”,”PROMOTED” FROM “PRODUCTS” “PRD” WHERE
 “PROMOTED”>TO_DATE(‘ 2013-06-17 00:00:00’, ‘syyyy-mm-dd hh24:mi:ss’)
 AND “ID”=:1 (accessing ‘ORCL@LOOPBACK’)

FIGURE 3

 30 www.ukoug.org

SPRING 15

Technology: Jonathan Lewis

every row from the sales table (in array
fetches) and checks each row against
the sites index then, for each result row
individually, accesses the products table.
As always there’s the question of
balancing the number of roundtrips
and the volume of data to find the best
strategy – in this case I’ll suggest that I
want to operate locally, get a remote join
to take place between products and sales
(since this eliminates a lot of data as early
as possible), pull the result back in a bulk
transfer to the local database then join to
sites. In this case all I have to do is put in
the hint /*+ leading (prd sal sit) */ (with
an optional and currently redundant)
driving_site(sit) to get the following plan
(see Figure 4).

The cardinality estimate at operation
2 (REMOTE) is clearly wrong, but the
optimizer still manages to get a better
estimate at the subsequent nested
loop operation; and we can see from
the Remote SQL Information that the
two-table join we wanted to take place
at the remote site has indeed occurred as
expected.

Strangely, when I had hinted the order as
/*+ leading(sal prd sit) */ – just swapping
the order of sal and prd – Oracle used
two remote operations to fetch the data
from sales and products separately,
then joined them locally with a hash
join. It doesn’t seem reasonable that the
optimizer should arrive at this plan, but
that’s the sort of surprise you can get
with distributed queries – even in 12.1.0.2
which is the version I’ve been using
throughout this article.

Distributed DML
When we move from “select” to “create
as select” we make a horrid discovery:
for no obvious reason the driving_site()
hint is not valid, so we need to find a
different way of dealing with the problem
of controlling the query. (Note: this
behaviour is not a bug it’s deliberate;
MoS Bug note 5517609 states: “This is
not a bug. A distributed DML statement
must execute on the database where the
DML target resides. The DRIVING_SITE hint
cannot override this.”)

There are two well-known ways
of working around this problem –
sometimes it is possible to make the
query “efficient enough” by creating
suitable join views at the remote site and
then querying the view; the alternative,
which I will demonstrate here, is to create
a pipelined function to hide the select

statement. Unfortunately this mechanism
can’t work with CTAS, or with “insert /*+
append */”, so you still suffer a penalty for
using distributed queries.

I’m going to use the first query I discussed
in the article (joining dist_home and
dist_away) to populate a table in the local
database. First I create a table, a scalar
type and an array type, then I create a
pipelined function that “pipes” rows of
the scalar type, then I can write a select
statement to insert from the pipelined
function into the table (see Figure 5):

You’ll notice I’ve added the “hint” “FIND
ME” to the embedded SQL- this was to
allow me to search the library cache
(v$sql) for the statement so that I could
find its sql_id and child_number and
check its execution plan and some of the
execution statistics.

Unfortunately the execution plan seemed
to disappear the moment the insert
completed, so I had to fall back on the
extended SQL trace (event 10046 at level
8) to see where each part of the code
ran. This allowed me to see that the

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Inst |IN-OUT|
--
0	SELECT STATEMENT		3627	162K	27 (8)		
1	NESTED LOOPS		3627	162K	27 (8)		
2	REMOTE		45	585	17 (0)	ORCL@~	R->S
* 3	INDEX UNIQUE SCAN	SI_PK	1	6	0 (0)		
--

Predicate Information (identified by operation id):

 3 - access(“SIT”.”ID”=”SAL”.”SITE”)

Remote SQL Information (identified by operation id):
--
 2 - SELECT /*+ LEADING (“PRD” “SQL” “SIT”) */ “A1”.”ID”,
 “A1”.”PROMOTED”,”A2”.”SALE_DATE”,”A2”.”SITE”,”A2”.”PRODUCT”,”A2”.”QTY”,
 “A2”.”PROFIT” FROM “PRODUCTS” “A1”,”SALES” “A2” WHERE “A1”.”ID”=”A2”.”PRODUCT”
 AND “A1”.”PROMOTED”>TO_DATE(‘ 2013-06-17 00:00:00’, ‘syyyy-mm-dd hh24:mi:ss’)
 (accessing ‘ORCL@LOOPBACK’)

FIGURE 4

create table dist_join (small_vc varchar2(10), large_vc varchar2(200));

create or replace type myScalarType as object (
	 small_vc	 varchar2(10),
	 large_vc	 varchar2(200)
)
/

create or replace type myArrayType as table of myScalarType
/

create or replace function pipe_fun
return myArrayType pipelined
as
begin
	 for r1 in (
		 select		 /*+
					 driving_site (da) FIND ME
				 */
			 dh.small_vc,
			 da.large_vc
		 from
			 dist_home		 dh,
			 dist_away@&m_target	da
		 where	
			 dh.small_vc like ‘1%’
		 and	 da.id = dh.id
) loop
		 pipe row (myScalarType(r1.small_vc, r1.large_vc));
	 end loop;
	 return;
end;
/

insert into dist_join
select	 *
from	 table(pipe_fun)
;

commit;

FIGURE 5

OracleScene
D I G I T A L

www.ukoug.org 31

Technology: Jonathan Lewis

Rows (1st) Rows (avg) Rows (max) Row Source Operation
---------- ---------- ---------- ---
 1111 1111 1111 HASH JOIN (cr=65 pr=0 time=8342 us)
 1111 1111 1111 REMOTE DIST_HOME (cr=0 pr=0 time=6285 us)
 2000 2000 2000 TABLE ACCESS FULL DIST_AWAY (cr=65 pr=0 time=888 us)

Elapsed times include waiting on following events:
 Event waited on Times Max. Wait Total Waited
 -- Waited ---------- ------------
 SQL*Net message to client 15 0.00 0.00
 SQL*Net message from client 15 68.18 68.19

FIGURE 6

embedded query was executed by the
remote database, which sent a request
for rows from the dist_home table to
the local database and pulled them to
the remote database in just two fetch

calls. The trace files also showed that the
embedded select statement was fetching
100 rows at a time thanks to the standard
PL/SQL optimisation of “cursor for loops”
– so the execution time was suitably close

to standard array processing time and not
the row-by-row processing that the PL/
SQL appears to be.

Running tkprof against the trace file
from the remote session this (with a few
cosmetic cuts) is the information I got for
the critical query (see Figure 6).

As you can see, the plan shows that the
remote database is, indeed, the driving
site for this query. The 15 SQL*Net round-
trips also give you some idea of the array-
processing efficiency, although you really
need to see the details in the trace file
to understand exactly where they come
from (and why one of them – the last one
in the trace file - is 68 seconds).

Summary
It’s possible that the optimizer has some code that is supposed to allow distributed queries to execute at a remote site and some
code that should recognise that remote access is more expensive than local access, but at present that code doesn’t seem to be
functioning properly. Because of this we have to tell Oracle when it would be appropriate to execute a query at a remote site.
We may also need to force Oracle into a particular join order to ensure that when two tables are located at the same database
the join between them takes place at that database. The driving_site() hint dictates where the work is done, and the leading()
hint (possibly with the help of a no_merge() hint) can dictate locality of joins. Unfortunately the driving_site() hint is not valid as
part of either “create as select (CTAS)” or “insert as select”, so we have to find an alternative mechanism that allows us to control
the distributed query.

Footnote
There are other limitations and problems with distributed joins and I’ve written several articles about the topic on my blog: http://jonathanlewis.wordpress.com/category/
oracle/distributed/ For example, one of the common strategies to make remotely joinable tables join remotely is to create a remote view joining then and then query the
view; but when you query a remote view, the local optimizer isn’t able to move inside the view to discover the statistics of the underlying tables – so joins involving remote
views can produce very bad execution plans.
That’s not the only feature that results in the optimizer losing information and producing bad execution plans, another is that it does not collect histogram information
from remote objects, it only collects the simple column-level statistics. I’ve even got an example where a four table join does a remote join of the first three tables if the
cardinality for the first table is less than 1,000 and switches to three separate remote operations – doing effectively the same sequence of nested loop joins – when the
estimated cardinality hits 1,000.
All in all, distributed queries lead to lots of traps and, going back to my opening comment on the difficulties; perhaps there are some bugs in the optimizer that have spent
the last few years hiding away waiting for someone to raise the SR that will introduce the fixes that will change everything.

ABOUT
THE
AUTHOR

Jonathan Lewis
Freelance Consultant, JL Computer Consultancy

Jonathan’s experience with Oracle goes back more than 25 years. He specialises in
physical database design, the strategic use of the Oracle database engine and solving
performance issues. Jonathan is the author of ‘Oracle Core’ and ‘Cost Based Oracle –
Fundamentals’ both published by Apress and ‘Practical Oracle 8i – Designing Efficient
Databases’ published by Addison-Wesley, and has contributed to three other books
about Oracle. He is one of the best-known speakers on the UK Oracle circuit, as well
as being very popular on the international scene – having worked or lectured in 50
different countries. Further details of his published papers, presentations
and tutorials can be found through his blog: jonathanlewis.wordpress.com.

